This article is mostly correct -- see my comments below in [[ brackets ]]. As usual the Chinese connection is emphasized in the title, even though Plomin (Kings College London) is the more experienced researcher in this area, and most of our DNA samples come from US citizens.
To clarify, my main motivation for understanding the genetics of cognition derives from the observation that the human brain, the most complex object we know of in the universe, is produced from a genetic code of only gigabits in length. How, exactly, this works is one of the greatest scientific mysteries. Genomic selection and other "spin-offs" from this research are of secondary interest.
Nature News: The US adolescents who signed up for the Study of Mathematically Precocious Youth (SMPY) in the 1970s were the smartest of the smart, with mathematical and verbal-reasoning skills within the top 1% of the population. Now, researchers at BGI (formerly the Beijing Genomics Institute) in Shenzhen, China, the largest gene-sequencing facility in the world, are searching for the quirks of DNA that may contribute to such gifts. Plunging into an area that is littered with failures and riven with controversy, the researchers are scouring the genomes of 1,600 of these high-fliers in an ambitious project to find the first common genetic variants associated with human intelligence.
[[ SMPY qualifiers scored at the 1 in 10k level on the math portion of the SAT. Due to the positive correlation between M and V they almost all have V scores in the top half of one percent. ]]
The project, which was launched in August 2012 and is slated to begin data analysis in the next few months, has spawned wild accusations of eugenics plots, as well as more measured objections by social scientists who view such research as a distraction from pressing societal issues. Some geneticists, however, take issue with the study for a different reason. They say that it is highly unlikely to find anything of interest — because the sample size is too small and intelligence is too complex.
Earlier large studies with the same goal have failed. But scientists from BGI’s Cognitive Genomics group hope that their super-smart sample will give them an edge, because it should be enriched with bits of DNA that confer effects on intelligence. “An exceptional person gets you an order of magnitude more statistical power than if you took random people from the population — I’d say we have a fighting chance,” says Stephen Hsu, a theoretical physicist from Michigan State University in East Lansing, who acts as a scientific adviser to BGI and is one of the project’s leaders.
“If they think they’re likely to get much useful data out of this study, they’re almost certainly wrong,” says Daniel MacArthur, a geneticist at Massachusetts General Hospital in Boston. He is not against intelligence studies in principle, despite the visceral reactions they provoke in some people. “Studying intelligence is useful for understanding cognitive function, or diseases” that affect it, he says. But he questions whether the study will work.
[[ Not exactly sure what Dan means by "useful data" here. It's true that we don't anticipate getting more than a few genome-wide significant hits from a GWAS analysis. We may get zero! ]]
... Both Plomin and Hsu are passionate enough to take a shot, although their goals differ. Hsu is focused on the genetic basis of extreme intelligence. “My primary interest is why Einstein or Hawking is different from a normal person,” he says. Plomin is sequencing high-performers as a way of homing in on genes that affect intelligence in the broader population. If enough of these are discovered, he thinks that it may be possible to predict someone’s intelligence from an early age, and to offer help to children who are at risk of learning disabilities.
[[ This may give the false impression that it's a different genetic mechanism that gives rise to "extreme" intelligence as opposed to normal variation. ]]
Publicity around the project has spawned some extreme reactions. An article published in March entitled ‘China is Engineering Genius Babies’ in the US arts and culture magazine VICE branded the study “a state-endorsed genetic-engineering project” that will allow parents to predict the IQs of embryos and selectively breed ever-smarter children. (“That’s nuts,” says Hsu.) “Intelligence does push a lot of buttons. It’s like waving a red flag to a bull,” says Plomin. He argues that there is nothing wrong with using genetic information as the basis of educational interventions. “I’m interested in predicting learning problems early rather than waiting until kids get to school and then fail,” he says. ...
0 comments:
Post a Comment