BPadvertisementfrom

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Wednesday, 9 May 2012

Entanglement and Decoherence

Posted on 10:44 by Unknown
My preprint http://arxiv.org/pdf/1205.1584v1.pdf (which appeared yesterday evening on arxiv) has already elicited a response from the brilliant and eccentric Lubos Motl. Lubos believes in the "subjective" interpretation of the quantum state, so objects to the idea of a unitarily-evolving wavefunction describing all degrees of freedom in the universe. (See here for more discussion.) I, on the other hand, am willing to consider the possibility that many worlds is correct. Here is how Lubos characterizes the disagreement:
Buniy and Hsu also seem to be confused about the topics that have been covered hundreds of times on this blog. In particular, the right interpretation of the state is a subjective one. Consequently, all the properties of a state – e.g. its being entangled – are subjective as well. They depend on what the observer just knows at a given moment. Once he knows the detailed state of objects or observables, their previous entanglement becomes irrelevant. 
... When I read papers such as one by Buniy and Hsu, I constantly see the wrong assumption written everything in between the lines – and sometimes inside the lines – that the wave function is an objective wave and one may objectively discuss its properties. Moreover, they really deny that the state vector should be updated when an observable is changed. But that's exactly what you should do. The state vector is a collection of complex numbers that describe the probabilistic knowledge about a physical system available to an observer and when the observer measures an observable, the state instantly changes because the state is his knowledge and the knowledge changes!
In the section of our paper on Schmidt decomposition, we write
A measurement of subsystem A which determines it to be in state ψ^(n)_A implies that the rest of the universe must be in state ψ^(n)_B. For example, A might consist of a few spins [9]; it is interesting, and perhaps unexpected, that a measurement of these spins places the rest of the universe into a particular state ψ^(n)_B. As we will see below, in the cosmological context these modes are spread throughout the universe, mostly beyond our horizon. Because we do not have access to these modes, they do not necessarily prevent us from detecting A in a superposition of two or more of the ψ^(n)_A. However, if we had sufficient access to B degrees of freedom (for example, if the relevant information differentiating between ψ^(n)_A states is readily accessible in our local environment or in our memory records), then the A system would decohere into one of the ψ^(n)_A.
This discussion makes it clear that ψ describes all possible branches of the wavefunction, including those that may have already decohered from each other: it describes not just the subjective experience of one observer, but of all possible observers. If we insist on removing decohered branches from the wavefunction (e.g., via collapse or von Neumann projection), then much of the entanglement we discuss in the paper is also excised. However, if we only remove branches that are inconsistent with the observations of a specific single observer, most of it will remain. Note decoherence is a continuous and (in principle) reversible phenomenon, so (at least within a unitary framework) there is no point at which one can say two outcomes have entirely decohered -- one can merely cite the smallness of overlap between the two branches or the level of improbability of interference between them.

I don't think Lubos disagrees with the mathematical statements we make about the entanglement properties of ψ. He may claim that these entanglement properties are not subject to experimental test. At least in principle, one can test whether systems A and B, which are in two different horizon volumes at cosmological time t1, are entangled. We have to wait until some later time t2, when there has been enough time for classical communication between A and B, but otherwise the protocol for determining entanglement is the usual one.

If we leave aside cosmology and consider, for example, the atoms or photons in a box, the same formalism we employ shows that there is likely to be widespread entanglement among the particles. In principle, an experimentalist who is outside the box can test whether the state ψ describing the box is "typical" (i.e., highly entangled) by making very precise measurements.

See stackexchange for more discussion.
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Posted in cosmology, many worlds, physics, quantum mechanics | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • PhD Comics: the movie
    PHD Movie Trailer from PHD Comics on Vimeo . I met Jorge Cham , the cartoonist who draws PhD Comics, a few years ago at Sci Foo. Cham was ...
  • Finding the Next Einstein
    Duke researcher Jonathan Wai interviewed me for his Psychology Today blog, Finding the Next Einstein . Below are my answers to two of his q...
  • Beanbags and causal variants
    Not only do these results implicate common causal variants as the source of heritability in disease susceptibility, but they also suggest th...
  • Sitzfleisch
    Freeman Dyson reviews the new biography of Oppenheimer by Ray Monk. I discussed the book already here . NYBooks : ... The subtitle, “A Life ...
  • A blog is born
    Raghu Parasarathy , a biophysicist at U Oregon, and my correspondent in this previous post on faculty blogging, has decided to try it out. ...
  • News from Microsoft Research Faculty Summit 2013
    Measuring the maximal commuting subset of observables uniquely determines the pure state of a quantum system (recently proved Kadison-Singer...
  • Talk cancelled
    This talk has been cancelled, for complex reasons that I will not discuss.
  • East Asian sociopaths?
    Some would assert that CEOs and other people in leadership positions are often warm sociopaths . Interestingly, it is claimed that there is ...
  • Swedish height in the 20th century
    Average height of Swedish military conscripts during the 20th century. Looks like an increase of roughly 1 cm per decade or about 1.5 SD in ...
  • The differences are enormous
    Luis Alvarez laid it out bluntly: The world of mathematics and theoretical physics is hierarchical. That was my first exposure to it. There...

Categories

  • ability (2)
  • academia (9)
  • affirmative action (8)
  • ai (13)
  • aig (1)
  • alan turing (3)
  • algorithms (2)
  • alpha (2)
  • american society (54)
  • art (3)
  • ashkenazim (1)
  • aspergers (4)
  • athletics (6)
  • autism (4)
  • autobiographical (13)
  • basketball (4)
  • bayes (1)
  • behavioral economics (4)
  • berkeley (5)
  • bgi (24)
  • biology (23)
  • biotech (6)
  • bjj (5)
  • black holes (4)
  • blade runner (2)
  • blogging (3)
  • books (5)
  • borges (2)
  • bounded rationality (10)
  • brainpower (57)
  • bubbles (3)
  • caltech (14)
  • cambridge uk (1)
  • careers (18)
  • charles darwin (1)
  • chet baker (2)
  • China (25)
  • christmas (1)
  • class (2)
  • cognitive science (35)
  • cold war (1)
  • complexity (1)
  • computing (9)
  • conferences (4)
  • cosmology (4)
  • creativity (3)
  • credit crisis (10)
  • crossfit (5)
  • cryptography (2)
  • data mining (4)
  • dating (2)
  • demographics (1)
  • derivatives (5)
  • determinism (1)
  • digital books (1)
  • dna (4)
  • economic history (5)
  • economics (38)
  • econtalk (2)
  • ecosystems (1)
  • education (5)
  • efficient markets (8)
  • Einstein (2)
  • elitism (14)
  • encryption (1)
  • energy (1)
  • entrepreneurs (3)
  • entropy (1)
  • environmentalism (1)
  • eugene (3)
  • evolution (19)
  • expert prediction (6)
  • fake alpha (2)
  • feminism (2)
  • Fermi problems (2)
  • feynman (7)
  • film (9)
  • finance (42)
  • fitness (3)
  • flynn effect (1)
  • foo camp (1)
  • football (5)
  • france (1)
  • free will (1)
  • freeman dyson (2)
  • fx (2)
  • game theory (1)
  • geeks (2)
  • gender (4)
  • genetic engineering (15)
  • genetics (79)
  • genius (24)
  • genomics (2)
  • geopolitics (7)
  • gilded age (13)
  • global warming (1)
  • globalization (23)
  • godel (2)
  • goldman sachs (2)
  • google (4)
  • happiness (2)
  • harvard (8)
  • harvard society of fellows (5)
  • hedge funds (4)
  • hedonic treadmill (1)
  • height (2)
  • higher education (38)
  • history (8)
  • history of science (12)
  • hormones (3)
  • hugh everett (2)
  • human capital (34)
  • humor (1)
  • income inequality (21)
  • india (2)
  • industrial revolution (1)
  • innovation (38)
  • intellectual history (10)
  • intellectual property (1)
  • intellectual ventures (1)
  • internet (4)
  • iq (16)
  • italy (4)
  • james salter (3)
  • japan (4)
  • jiujitsu (8)
  • keynes (1)
  • kids (13)
  • lewontin fallacy (1)
  • lhc (1)
  • literature (12)
  • luck (1)
  • machine learning (8)
  • malcolm gladwell (1)
  • manhattan (2)
  • many worlds (10)
  • mathematics (14)
  • meritocracy (7)
  • microsoft (2)
  • mma (10)
  • monsters (2)
  • moore's law (1)
  • movies (9)
  • MSU (18)
  • music (5)
  • mutants (2)
  • nathan myhrvold (1)
  • neal stephenson (1)
  • neanderthals (2)
  • nerds (3)
  • net worth (5)
  • neuroscience (7)
  • new yorker (1)
  • nicholas metropolis (1)
  • noam chomsky (2)
  • nobel prize (2)
  • nsa (2)
  • nuclear weapons (5)
  • obama (7)
  • olympics (4)
  • oppenheimer (7)
  • patents (1)
  • personality (9)
  • philip k. dick (1)
  • philosophy of mind (2)
  • photos (40)
  • physical training (13)
  • physics (73)
  • podcasts (10)
  • political correctness (6)
  • politics (4)
  • pop culture (2)
  • prisoner's dilemma (1)
  • privacy (2)
  • probability (5)
  • prostitution (2)
  • psychology (25)
  • psychometrics (31)
  • qcd (1)
  • quants (9)
  • quantum computers (2)
  • quantum field theory (3)
  • quantum mechanics (18)
  • race relations (10)
  • real estate (1)
  • realpolitik (6)
  • renaissance technologies (1)
  • research (3)
  • russia (2)
  • sad but true (2)
  • sci fi (8)
  • science (42)
  • sec (1)
  • security (5)
  • silicon valley (6)
  • singularity (1)
  • smpy (1)
  • social networks (2)
  • social science (12)
  • software development (2)
  • solar energy (1)
  • sports (13)
  • startups (19)
  • statistics (16)
  • success (2)
  • taiwan (1)
  • talks (16)
  • teaching (2)
  • technology (34)
  • television (2)
  • travel (24)
  • turing test (1)
  • ufc (8)
  • ultimate fighting (1)
  • universities (33)
  • university of oregon (6)
  • usain bolt (2)
  • venture capital (3)
  • volatility (1)
  • von Neumann (10)
  • wall street (2)
  • war (1)
  • warren buffet (1)
  • wwii (3)

Blog Archive

  • ►  2013 (134)
    • ►  August (10)
    • ►  July (15)
    • ►  June (22)
    • ►  May (20)
    • ►  April (21)
    • ►  March (18)
    • ►  February (14)
    • ►  January (14)
  • ▼  2012 (222)
    • ►  December (17)
    • ►  November (19)
    • ►  October (20)
    • ►  September (25)
    • ►  August (19)
    • ►  July (18)
    • ►  June (16)
    • ▼  May (20)
      • Do not eat this kit
      • Pikachu
      • Prometheus
      • Algo vs Algo and the Facebook IPO
      • The common app
      • Motor City airport
      • Quants at the SEC
      • Five years of GWAS discovery
      • Eurodammerung
      • Modeling gluttony
      • Stanford and Silicon Valley
      • Girls, Game and Sex
      • Entanglement and Decoherence
      • Everything is Entangled
      • The truth about venture capital
      • NRC physics ranking by research output
      • Exceptional Cognitive Ability: The Phenotype
      • Jensen on g and genius
      • Theory and experiment
      • Risk taking and innovation: lawyers and art histor...
    • ►  April (16)
    • ►  March (18)
    • ►  February (20)
    • ►  January (14)
  • ►  2011 (144)
    • ►  December (20)
    • ►  November (16)
    • ►  October (25)
    • ►  September (23)
    • ►  August (21)
    • ►  July (26)
    • ►  June (13)
Powered by Blogger.

About Me

Unknown
View my complete profile